VoIP Security

Security, Defined?

- Security Language:
 - Availability
 - Protect from outages and denial of service
 - Integrity
 - Don’t let someone modify messages in transit (unless authorized)
 - Confidentiality
 - Protect against eavesdropping
 - Authorization and Non-Repudiation
 - Positively identify the party you are exchanging data with, and don’t allow them to deny that they sent the data.

Threats

- Biggest impact:
 - VoIP devices are data devices; all the IP based attacks work against them (and then some).
- Voice specific:
 - Impact of lost service can be high
 - 911! (Fortunately, most of us carry out-of-band verbal communication devices aka cell phones)
 - Call Centers

Threat Impact

- Denial of Service
 - Injury
 - Loss of revenue
- Breach of Confidentiality
 - Disclosure of valuable or protected information
 - Legal Liability
- Unauthorized Use (Toll Fraud)
 - Financial Loss
 - Service through a gateway is cheap, but the cost per call is non-zero.
General Vulnerabilities

- **DNS**
 - Any DNS attack can impact VoIP
 - SRV record for SIP proxies
 - ENUM
- **ARP**
 - ARP spoofing and poisoning redirect traffic to the wrong NIC
- **DHCP**
 - Rogue DHCP servers
 - SIP proxy or file server configured via DHCP
- **DDoS (Distributed Denial of Service)**

VoIP more vulnerable?

- **Real-time traffic**
 - Less effort required to disrupt service
- **Small devices**
 - Embedded systems, small processors
 - Easier to overload
 - Less error checking
 - ITS Phones known to crash during OIT security scan
 - Less monitoring
 - Virus scans?

Sample Attacks

- **DDoS**
 - Botnet floods
 - SIP REGISTER or INVITEs at the proxy
 - RTP or RTCP at the UAs
 - Attacker sends malicious malformed packets at UAs
 - Force crash in the UA
 - Attacker sends malicious packets at SIP proxy
 - Cause crash or take control of system

Man in the Middle

- **Rogue Proxy**
 - Convince UA to register with the wrong proxy
 - Use rogue DHCP or DNS cache poison
 - Cause denial of service
 - Redirect calls
 - Banking call center
 - Send calls through eavesdropping point
Man in the Middle
- Generic man-in-the-middle attack
 - Use ARP or DNS attack
 - Reroute traffic through "black" relay for eavesdropping
 - Redirect signaling traffic
 - Denial of Service
 - Malicious Call Redirection
 - Hijack connection

Unprotected Signaling
- Unauthorized Access
 - Spoofed Caller ID
 - Too many systems rely on Caller ID as authoritative and immutable
 - Banks request that you "activate your card by calling from your home phone"
 - We tend to screen calls by looking at the Caller ID information

Tools
- Encryption
 - TLS
 - IPsec
- Authentication
 - 802.1x
- Traffic Separation
 - VLANs + packet filters
- Active Monitoring