NAT Traversal for VoIP

ITS 441

Bibliography

- RFC 5389 Session Traversal Utilities for NAT (STUN)
- I.D.: draft-ietf-behave-turn Traversal Using Relays around NAT (TURN)
- RFC 5626 Managing Client-Initiated Connections in the Session Initiation Protocol (SIP)
- I.D. draft-ietf-mmusic-ice Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols

Some Notes on NAT

- The most common NAPT today has a single external IP address
 - NAPT insures that every connection has a unique port number
 - The port number determines where the packet is forwarded to, and how it is translated
 - The NAPT may attempt to preserve the internal port number if it is not already in use
 - NAPT “bindings” are created, or renewed, by an out-bound packet.
 - NAPT bindings can be static, or set up with a signaling protocol such as UPnP
NAT Behavior

- Outbound packet creates a binding
 - TCP bindings usually persist until the TCP connection is closed
 - UDP bindings are deleted after some time
- Scope of bindings
 - Most liberal: packets from anywhere to the external IP address and mapped port number go to the internal host that created the binding
 - Address specific: only the recipient IP of the outbound packet can send a packet back
 - Address/Port specific: only the recipient IP of the outbound packet can send a packet back, and only from the port used in that outbound packet.

Why is NAT “Bad”

- Invisible to some protocols (e.g. Web)
 - (That is why we put up with it)
- Bad for “Signaling” and “Offer/Answer” Protocols
 - Think SIP
 - UA includes its address in the INVITE
 - SDP sends address/port to send RTP to

SIP

INVITE

NAT

Proxy

\[\text{SIP header contains 192.168.1.2 as the connection address} \]

Proxy tells other UA to connect to 192.168.1.2

FAILS

What if NAT translates the INVITE (ALG)

INVITE

NAT

Proxy

\[\text{SIP header contains 192.168.1.2 as the connection address} \]

Proxy tells other UA to connect to 132.235.3.5:5060

Might Work;
What about RTP?
NAT-based solutions

- Remember: end-to-end security (encryption or integrity checks) breaks all this
- There may be more than one NAT in the sequence
- If the second UA is behind a NAT, this cannot work
- UAs have no way to tell if a connection (call) will work

Host based solutions

- STUN
 - Uses a server in the Internet to allow a client to discover the external NAT IP address
 - May be enough for some NAT versions
 - Won’t work in general
- Meant to be used as a tool in a larger solution

“sip-outbound” (RFC 5626)

- Incoming calls
 - require an inbound SIP INVITE
 - NAT won’t forward it
- RFC 5626
 - Updates SIP
 - UA sends REGISTER and keeps that connection open
 - Proxy sends SIP INVITES over this existing connection

TURN

- Defines a relay server
- Client creates a connection to a TURN server
- All packets are encapsulated in TURN messages and sent via the relay
ICE

- Extends SDP
 - Can also be used for non-sip-based protocols
- UA collects all possible addresses
 - Local NICs (could be more than one)
 - Outside NAT address discovered via STUN
 - Address of a TURN relay
- UAs rank-order the addresses and try every pair until a connection succeeds