Internet Transport

ITS 214
Structure

• Access Structure
 • DSL
 • Customers connect to switching offices via DSLAM
 • Cable
 • Customers connect to fiber node, then cable head-end via CMTS

• Traffic from multiple connection points needs to be combined and sent to the Tier 1 backbone providers
Structure

- From the ISP perspective
 - Tier II ISPs serve many Tier IIs
 - Tier II ISPs connect to a number of Tier I providers, at multiple points
- Everyone uses fiber, but...
- We need a standard, flexible way to connect traffic streams together and pull them back apart
Requirements

• The fiber network ultimately has to carry packets, but
 • Putting packets directly on the fiber is possible, but
 • Expensive (packet switching are really high speed)
 • Not easy to manage (aka troubleshoot)
 • Does not address contracts, e.g.
 • Pay me $$$ for a 100Mbps connection

• We need a way to set up paths through the fiber network - Provisioning
Fiber Networks

• First
 • Every fiber can handle WDM - multiple optical carriers
 • “Optical Switching”

• Then
 • Multiplexing
 • Use lower-speed equipment near the edge of the network, then combine those into higher and higher speed paths in the backbone
PDH

- In the (digital) beginning, there was
 - PDH - Plesiochronous Digital Hierarchy
 - Digital multiplexing standard(s)
 - Combine 64kbps streams into a 1.5Mbps stream
 - Combine 1.5Mbps streams into
 - etc.
 - Plesiochronous means devices can differ slightly in speed
 - That makes assembling and disassembling traffic streams really hard (and expensive)
SDH

- Synchronous Digital Hierarchy
 - Internationally compatible
 - All devices run on the same clock
 - Adding and Removing traffic streams is much less expensive
 - Traffic Streams are called Tributaries or Containers
 - Adding/Removing traffic is called
 - Add-Drop Multiplexing, or
 - Grooming
SDH Optical Standards

• OC-1
 • Roughly 50Mbps
 • Defines a basic frame structure (how many bits per frame)
 • Optical encoding

• Higher speeds by combining multiples of OC-1
Higher Multiplexing Levels

- The Standard allows any multiple
- In practice
 - OC-3 (150Mbps) is the lowest level implemented
 - OC-12 (600Mbps)
 - OC-48 (2.5Gbps)
 - OC-192 (10Gbps)
- Grooming is easy in this structure
The frame content

- Not everyone agrees on frame content
 - Europe
 - OC-1 contains one STM-0 frame
 - OC-3 contains one STM-1 frame
 - US
 - ANSI SONET
 - OC-1 contains one STS-1
 - OC-3 contains one STS-3
SDH/SONET and Rings

In Use

Idle
SDH/SONET and Rings

Sunday, February 14, 2010